Supplementary Material for ‘Learning Tree Struc-

ture in Multi-Task Learning’

A. Basic Lemmas for Proving Theorem 3

Before presenting the proof for Theorem 3, we first prove some
useful lemmas.

LEMMA 3. [CW{ |12 < (m — 1)Vd|Wh||p.

Proof: For any matrix A € R™ "2, we have [|A||1,2 < 7[|A]|F,
where 7 < min(r1,72) denotes the rank of A and the inequality
holds due to the Cauchy-Schwarz inequality. Based on the defini-
tion of the matrix C, we have

ICWi 12 = = ZZ IWh,i = Wh,jll2
i=1 j#i
<3 ZZ wh,ill2 + IWn,;ll2)
i=1 j#i

(m = 1)[W 1,2
< (m— D)Vd|Wh|r,
where the first inequality holds due to the triangular inequality for

vector norms. So we complete the proof. ]

LEMMA 4. For any matrix pair A, A € R¥™™ e have

ICAT |12 — |CAT|12 < H(CAT _ CAT)E(A)HLZ

The proof of Lemma 4 is similar to that of Lemma 1 in [1] and
hence we omit it here.

LEMMA 5. Assume that the training data is normalized to have
zero mean and unit variance. For h € Ny, if the regularization
parameter \p, satisfies Eq. (19), then with probability at least 1 —

exp(—3 (6 — dmlog(1 + %))) for an optimal solution W =
S 7L Wy, of problem (3) and any W = Y1 W), € R¥*™,
where {Wh}hH:1 satisfy the sequential constraints, we have
X T vee(W) — vee(F") 3 < —— X7 vee(W) — vee(F*)|3
n n

(25)

F

+ (m — 1)\/Ei An(0n +1) H (Wh - Wh)D(Wh)
h=1

Proof. Since W is an optimal solution of problem (3), {W, }/L

satisfy the sequential constraints, and for any W = Zthl Wi,
satisfying the constraints too, we have

1 m H
— > IXT D Wi —ill3
mni3 h=1

1 m H H
< — Z IXT S wii =il + >0 A (ICWT 2 = ICW] 11.2)

h=1 h=1

By substituting y;; = ( (@ >) w; + €ji,i € N, j € Ny, into the
above inequality, we can obtaln

1 m H 1 m H
T - 2 T 2
— Z X Z Wi — £l < — Z X5 Z wh,i — £ 2
h=1 mna3 h=1

mn <
i=

H
+ 3 2 (ICWTll 2 = 1CWT 12) + —

h=1 mn

(26)

i <Z7VAVh _Wh>7

where Z = [Xi€1, -, Xmem] € RY™ with its (j,
computed as zj; = Y p_, :c(.”
in X; for the ith task. Since x;

and unit variance and €;; ~ N(O, o?), we have
2
Zji ~ N(O, g )

By defining a variable v;; = Lz;;, we can get that v;; ~ N(0, 1).
Thus we can get that a variable u with the definition as

d m
=) D V= |ZHF7

j=1i=1

i)th entry

€x; and :vgzlg denotes the (7, 7)th entry

() is normalized to have zero mean

which follows a chi-squared distribution with the degree of freedom
as md. According to the Wallace inequality [2], for any § > 0 we
have

1 1
Pr(u > md + §) < exp <77 (6 — mdlog (1 + —))) .
2 md
Since u = || Z||%, we obtain that

2 2
Pr (—HZHF < —U\/der(S)
mn mn

=Pr(u < md+9) 27

>1—exp (f% (67mdlog <1+ id))) .
m

Based on Assumption 1 and Eq. (27), with probability at least 1 —
exp(—3(6 — mdlog(1 + -2))) we have

2 & .
%};<z7wh—wh>

H
2
\Z||FZ W, — Whllp (28)
h=1
2 - D(W
Simzeh (W;L—Wh> W .
mn he1 Ia
Moreover, by using Lemma 3 and 4, we have
ICWi 12 = ICW 1,2
5 E(Wp)
< H (ewi -cwl) "
1,2

< m = )V | (W - W, ) " 9)

F

By combing Egs. (26), (28) and (29), with probability at least
1 —exp(—3 (8 — mdlog(1 + -°-))) we have

L X T vee(W) — vee(F*)|3 < —— |XTvec(W) — vec(F*)|13
mn mn

D(W))
+Z( Vmd+ 50y + (m — 1) f,\h> H (Wi —wy) "

By plugging Eq. (19) into the above equation, we complete the
proof. |

B. Proof of Theorem 3

Proof. By making W, take value of W7, for h € Ny in Eq. (25),
we obtain

1
— [ XTvec(A)|I3 < (m —
n

)

F
(30)

H
\/gz )\h(eh + 1) HAS(W}L>
h=1




where A, = W, —W; and A = ZhH:l Ay, Under Assumption
1, we have

< ||XTvec(A)||2‘
FT Bpymn
By substituting Eq. (31) into Eq. (30), we obtain

HAI}?(W;L)

(3D

IXTvec(A)|2 < (m — 1)vVmndC. (32)

Therefore we can directly get Eq. (20) from Eq. (32). Since from
Assumption 1, we have

R . D(W},)
W5 = Wil =0, )

(v"vh — Wi

)

F

. . E(Wp)
[CW} —C(Wi) Iz =

(ch - C(w;;)T)

1,2
By combing Egs. (29), (31), and (20), we can easily prove Eqgs.
(21) and (22).
To prove E, = E(W73,), we need to prove the following two
statements:
V(i 5) € En = (i,5) € E(W3), (33)
V(i.j) € B(W}) = (i,5) € Ep. 34
We first prove Eq. (33) by contradiction. Assume there exists a
pair (¢',j) such that (i', j') € Ey, but (¢',5') € E(W3},). Then
according to the definitions of £} and E(W},), we have

_ H(sz)(l ")
2
S Yh(m — 1)2dC’
Bh

which contradicts Eq. (22), hence we prove Eq. (33). Next we
prove Eq. (34) by contradiction. Similarly, assume there exists

(i",5") € E(W}), but (i",5") & En. Since (i",5") & En,
based on the definition of E}, in Eq. (24) we have

J(ewz - cowirry™

2

< Yh(m — I)QdC.
2 Bh

Furthermore, using the condition in Eq. (23), we have

H (ng)(i”d”)

/1 .//)

H (cWi - C(vv;;)T)“ 7

2

. H <C(W2)T><i”’j”) )u”,j”)

- H (cw?

2 2
—1)2dC
S Yr(m ) .

Bn

which contradicts Eq. (22). So Eq. (34) is correct, which completes
the proof. |
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